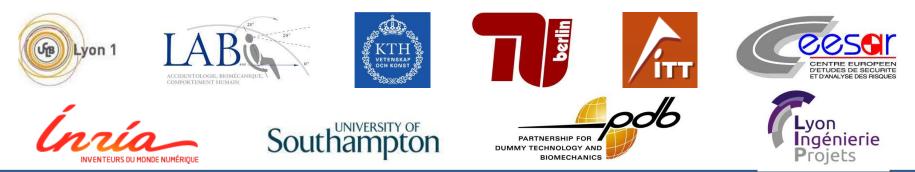
NHTSA Workshop – Nov 6, 2016



Development of an Open Source Framework to position and personalize Human Body Models

P. Petit (LAB Peugeot Renault, FR) **P. Beillas (Univ. Lyon 1-Ifsttar, FR)**

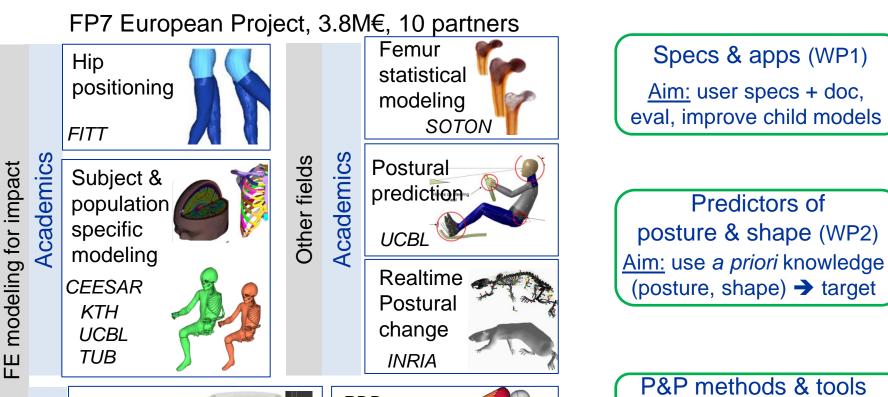
- S. Kirscht (TU Berlin, DE),
- S. Kleiven (KTH, SE),
- A. Chawla (FITT, IN),

E. Jolivet (CEESAR, FR)F. Faure (INRIA, FR)N. Praxl (PDB, DE)A. Bhaskar (SOTON, UK)

Project funded by the European Union Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n°605544 (Collaborative project PIPER)

Background and motivation

- Human Body Models: performance increasing ...
- **++** stable, approaching all known PMHS responses (better than dummies...),
- ++ a few families available
- -- same sizes as dummies
- -- Typically one posture only = daily use difficult (vehicle, research, OOP, precrash...)
- -- not always easy to access (does not help for specifications, reproducibility, procedures...)


Thums (source: Toyota Newsroo

PIPER Project (Nov 2013 - Apr 2017)

Objectives: methods and tools position and personalize HBM
 Child model (PIPER child model, 1.5-6YO) → Open Source

(WP3)

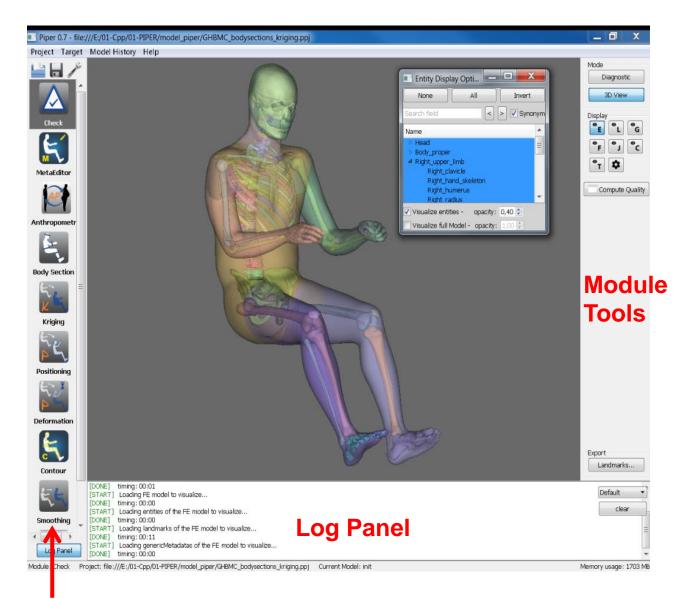
Aim: transform HBM (num)

PDB

Partnership

Dummy Tech. and Biomech

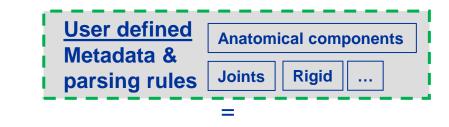
PIPER software: A Modular Framework


- FE HBM I/O
- Project Save/Open
- Modules that can update data (history/undo)
- Interactive GUI (+batch mode)
- Model visualization

Windows / Linux

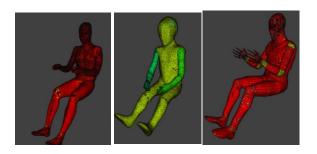
TetGen, Mesquite

. . .



Module Selection

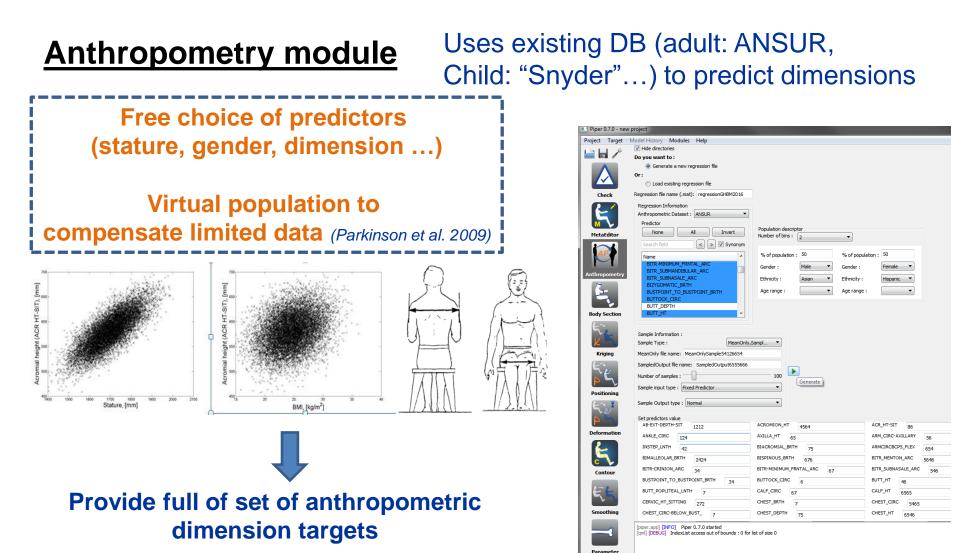
PIPER Framework: I/O - Import FE HBM



User:

+

defines FE groups using <u>standard preprocessing software</u> to describe anatomical entities, landmarks, contacts → FE Format
 associates groups and anatomical entities (AnatomyDB), joints, contacts → XML file
 selects rules to parse FE format input → XML File (provided, can be modified to add features or code)


Used so far: GHBMC (Dyna/Pam), Thums, Piper Child model, (Viva)

Workflow example: scaling based on anthropometry

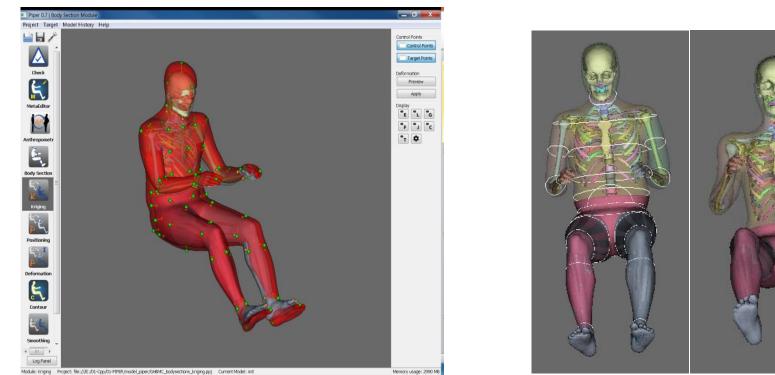
1 – Definition of target body dimensions: Anthropometry Module

Workflow example: PIPER scaling based on anthropometry

- 1 Definition of target body dimensions
- 2 Describe body dimensions on the HBM: Body Section Module

<u>Body</u> section module

- Link anthro to HBM dimensions
- Generates control points


Piper 0.7 Body Section Module			_ 0	x	
ect Target Model History Help					
	Body Dimensions		ady Sections		
	Correction of Contentions		Load Body Sec	tions	
	Add New Dimension		Export		
	Name	Type Ref Body Section	* Nodule Tools		
Check	ANKLE_CIRC	CIRC - ANKLE L	Y Ded Car	thomas	
	ARM_CIRC BIDELTOID_BRTH	CIRC * (ARM L WIDTH * SHOULDER BRTH	* = Body Sec	uuris	
	BUTT_DEPTH	DEPTH + BUTTOCK 2	Body Dimer	nsions	
	CALF_CIRC CHEST_BRTH	CIRC * CALF L WIDTH * CHEST	- Target Dime	insions	
letaEditor	CHEST_DEPTH	DEPTH + CHEST	· •		
N ANGE	Current Body dimension:	CIRC = LELBOWL CIRC 1	Kriging Defo	rmation	
APT CERTIFICATION		Associated Body Sections:	Visplay		
	Select		• • • E • L	G	
thropometr	ANKLE_L	1.00 🖨 1.00 🕏			
7	ANKLE_R	1,00 🚖		C	
			°т Ф		
dy Section					
	Din	nension value on current HBM			
K					
Kriging					
S. TELEST					
E Dimensions Ta	arget				x
		Dark Castler		Terrent Halve	
Body Dimension	Туре	Body Section	Value	Target Value	
BUTT_DEPTH	DEPTH	BUTTOCK_2	265.58200535262392	277.910000000003	
CALF_CIRC	CIRC	CALF_L	354.77451518487931	404.9370000000001	
formation CHEST_BRTH	WIDTH	CHEST	354.94073486328119	333.2060000000002	
CHEST_DEPTH	DEPTH	CHEST	247.32048802813051	296.7900000000002	
ELBOW_CIRC-EXTE		ELBOW_CIRC_L	289.63133427902142	285.9920000000002	
HIP_BRTH_SITTIN NECK_CIRC-OVER		BUTTOCK NECK_CIRC-LARYNX	350.55584716796875 397.16106956714043	446.6630000000001 378.315	=
Contour THIGH_CIRC-DUST/		THIGH_CIRC-D_L	403.86534435901524	460.548	
THIGH_CIRC-PROX		THIGH_CIRC-P_L	590.03783602937347	705.880999999999997	
WAIST_BRTH_OME		WAIST_0	326.42431640625	348.94900000000001	
WAIST_DEPTH-OM		WAIST_0	229.87358419811085	265.1990000000001	
wrist_CIRC-STYL	JON CIRC	WRIST_CIRC_L	163.6001592606118	175.974999999999999	Ψ.
		Close			
Log Panel					

Module: Check Project: file:///E:/01-Cpp/01-PIPER/model_piper/GHBMC_bodysections_kriging.ppj Current Model: init

Workflow example: Scaling based on anthropometry

- 1 Definition of target body dimensions
- 2 Describe body dimensions on the HBM
- 3 Deform the model: Kriging module
- 4 (optional) apply other modules (ex: change parameter defined in metadata such as material properties), post process (smoothing, ...)

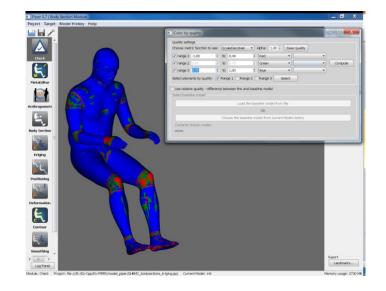
Kriging module

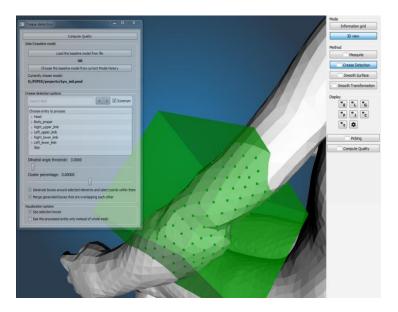
Post processing tools

Mesh Quality Metrics:

Calculation and display incl. <u>relative</u> quality (between / after...)

Mesh Quality Optimizer:

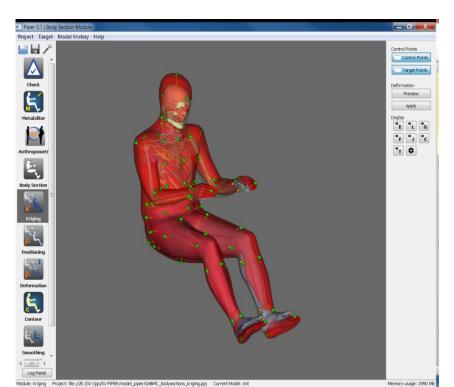

Optimize locally element quality (using MESQUITE Toolkit)


Transformation smoothing module:

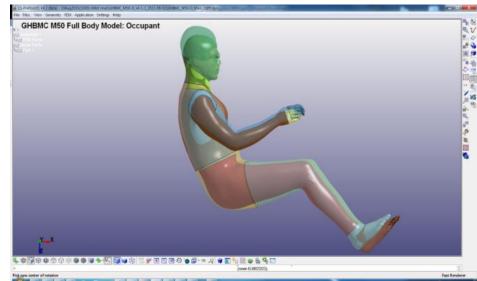
Smooth (/edit) surface, regional smoother of transformation (between surface constraints)

Aims: maintain quality, (typically) respect contacts

Applicable to any workflow



Workflow example: PIPER scaling based on anthropometry


- 1 Definition of target body dimensions
- 2 Describe body dimensions on the HBM
- 3 Deform the model
- 4 (optional) apply other modules (ex: smoothing, change parameter defined in metadata such as material properties) ...

5 – Export

Updated and Baseline FE models

Export

Summary/status: scaling / personalization

Based on anthropometry

- Modules available
 need to refine, integrate more workflows, etc...
 (e.g. length in body section, more skeletal constraints)
 - Methodology already defined and tested

• (ongoing) PIPER child model dedicated workflow

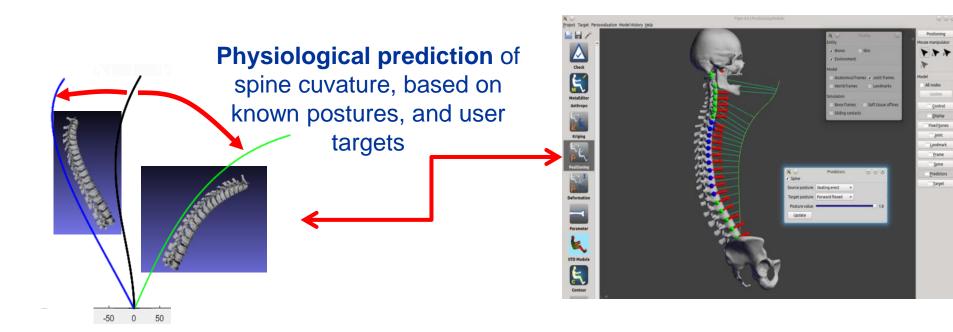
- Age vs. Anthro, local geom, some material (growth cartilage, brain)
- Note: use of external/user Octave/Matlab scripts possible...


Summary/status: scaling / personalization

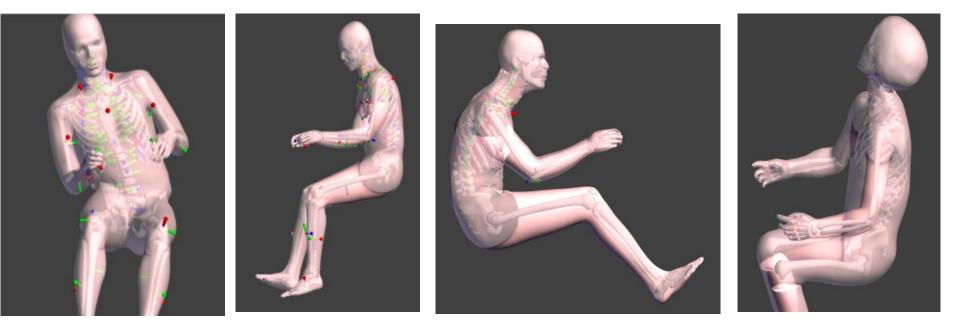
Based on anthropometry

- Modules available
 need to refine, integrate more workflows, etc...
 (e.g. length in body section, more skeletal constraints)
 - Methodology already defined and tested

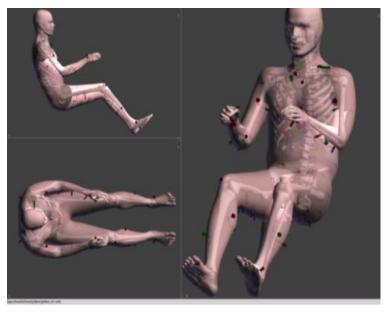
• (ongoing) PIPER child model dedicated workflow

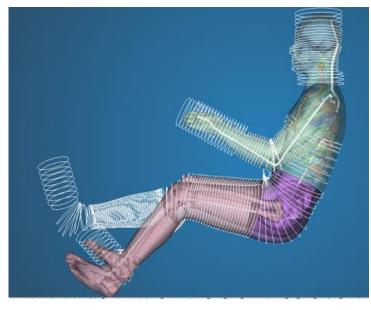

- Age vs. Anthro, local geom, some material (cartilage, brain)
- Note: use of external/user Octave/Matlab scripts possible...
- (Missing) Based on statistical Shape Models of full skeleton:
 - Still missing...but hoping to have it at the end...
- Other schemes are possible... but time is short

1 – Define the target position: Interactive Positioning Module


- <u>lightweight physics model</u> automatically create (HBM + Metadata).
- Includes functional constraints: bone collision, sliding contacts, joints...
- + User constraints: fixed bone, joint angle, bone landmark position...
- + A priori (biomech, ergo...) constraints to increase realism of target
- ➔ (real time) simulation to compute posture

1 – Define the target position: Interactive Positioning Module


- <u>lightweight physics model</u> automatically create (HBM + Metadata).
- Includes functional constraints: bone collision, sliding contacts, joints...
- + User constraints: fixed bone, joint angle, bone landmark position...
- <u>+ A priori (biomech, ergo...) constraints</u> to increase realism of target
 (real time) simulation to compute posture
- ➔ (real time) simulation to compute posture



- 1 Define the target position
- 2 Deform the model: two approaches available inside PIPER
 - + possible to use simulation workflow (updated model or landmarks used as simulation target) → automation ongoing

Physics-based Transformation¹:

Contours-based Transformation²:

[1] B. Gilles, et al. Frame-based interactive simulation of complex deformable objects, 2013[2] D. Jani et al., Repositioning the knee joint in human body FE models using a graphics based technique, 2012.

- 1 Define the target position:
- 2 Deform the model
- 3 Improve regional mesh quality: smoothing
- 4 Update FE model

Before Positioning **After Positioning**

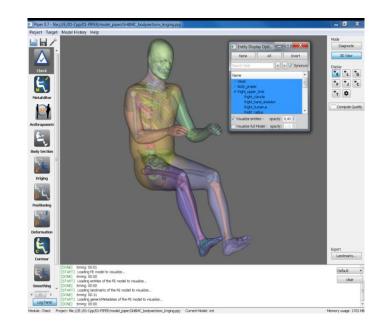
Summary/status: Positioning

- Applied to different models
- Fully successful (=directly runnable output model) on sagittal movement. Range of motion is of course an important parameter...
- Limitations: Still working on improving the lightweight physics simulation (soft contacts, transformation...), contours, debugging/robustness, a priori knowledge integration, integration with simulation workflow

Reminders:

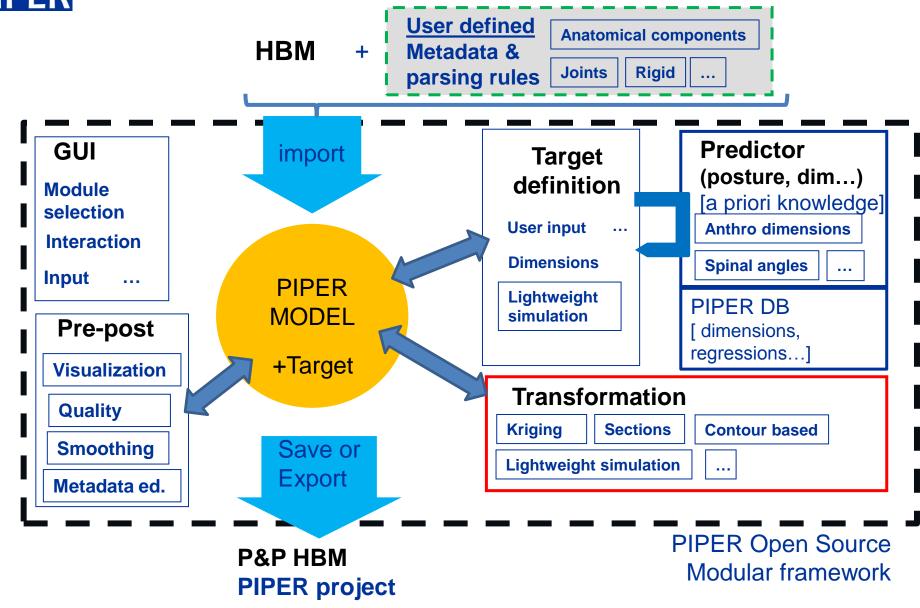
- Large range of motion likely to affect mesh deformation/quality independently of the deformation method used
- HBM design can limit their usability for positioning (continuous mesh, lack of sliding component bones/soft tissues...)

Conclusions


- Novel (unique) framework for P&P, using modular approach
 - FE code and model independent
 - Accounts for actual workflow (industries & acad users)
 - OPEN. Methods/data (yours?) can be added
- Beta version of software ready (import/export, modules...)
 - Workflows being developed / used for applications
- External beta testing: starting soon (short timeline, NDA)
 - Aim: gaps user expectation vs. functionalities, stability, priorities
- Perspectives
 - Add more modules (a priori, ...), bug fix, feedback ...
 - Public release: April 2017... (workshop in Paris). License:
 - Software: GPL v2 or later ;
 - Child model: GPLv3 + Open Science clause
 - Metadata: talks model providers
 - Open Source management structures: maintenance, ...

Thank you

Release: April 2017 Final Workshop in Paris



Contributors, P. Petit (LAB Peugeot Renault) P. Beillas, X. Wang, Y. Lafon, M.C. Chevalier T. Janak, M. Mear, T. Dupeux, J. Collot (Univ. Lyon 1-Ifsttar), S. Kirscht (TU Berlin), S. Kleiven, C. Giordano, V. Alvarez, X. Li (KTH), Chawla, A. Chhabra S. Paruchuri S. Singh (FITT, IN), E. Jolivet (CEESAR, FR), F. Faure, B. Gilles, T. Lemaire (INRIA) N. Praxl, J. Peres (PDB), A. Bhaskar, C. Lecomte (SOTON)

This research has received funding from the European FP7 Programme (FP7/2007-2013) under grant agreement n°605544

Overall approach and project structure

